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A STUDY OF TUNES NEAR INTEGER VALUES 

IN HADRON COLLIDERS 



ABSTRACT 

The bene6ts and difficulties associated with operating a hadron collider with 

betatron tunes near integer values are investigated. The benefits are due to the 

larger area in betatron tune space which is free of lower order resonances. An 

experiment with the Tevatron P-15 collider at Fermi National Accelerator Lab- 

oratory indicated that operating with tunes near 19.66 allowed a tune shift four 

times greater than the one allowed with the normal Tevatron working point near 

19.42. In principle, this new working point should increase the maximum lu- 

minosity by a factor of sixteen. DifEculties with the new working point include 

reduced luminosity lifetime. In particular, the lower betatron frequencies asso 

ciated with tunes near the integer have a greater overlap with the power supply 

noise spectrum which leads to transverse emittance growth. The effects of power 

supply noise were investigated with the Tevatron P-P collider. A feedback sys- 

tem was developed to reduce common-mode noise on the main power supply bus 

which reduced emittance growth rates. The mechanism for the common mode 

excitation of the beam growth was investigated using a superconducting magnet 

in the Magnet Test Facility at Fermilab. 
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This dissertation is a study of a new working point in betatron tune space 

for hadron coliiders. The study was motivated by the desire to improve the per- 

formance of hadron colliders for high energy physics experiments. One example 

of such a machine is the Proton-Antiproton (P -P) Tevatron Collider at Fermi 

National Accelerator Laboratory (Fermilab).[l] All of the working point exper- 

iments described in this work have been performed with the superconducting 

Tevatron Collider. 

1.1 Accelerator parameters relevant to high energy physics 
experiments 

High energy physics experiments require a large center-of-mass (CM) energy 

and a high counting rate for the creation of new massive particles as well as for 

other rare events.[2] Modern hadron colliders provide higher CM energy than 

fixed target machines. If two relativistic particles of total energy El and & 

circulate in opposite direction in a storage ring, the amount of available energy 

for a particle creation in head-on collisions is given by 

ECM = d&%i (1 - 1) 

If El = E2, the center of mass of the collision is at rest in the laboratory. In 

such a machine virt’ually all the energy is available for the particle creation and 

the CM energy rises as E instead of as fi in a fixed target machine.[3][4] At 

present, the highest available CM energy is 1.8 TeV in the Tevatron Collider: a 

0.9 TeV proton beam collides head-on with a 0.9 TeV antiproton beam travelling 

in the opposite direction in the same ring. 
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The counting rate 12 of an event in a collider is the product of its cross 

section uPp and the luminosity L, which is a collider parameter. 

R=Up#-L. (1 - 2) 

For a given cross section, the total number of events N available for analysis is 

proportional to the integrated counting rate and depends on the time variation 

of the luminosity described by luminosity lifetime, 

N= 
J 

Rdt =q,p- J t(t)dt. 0 - 3) 

Therefore, peak luminosity and luminosity lifetime along with CM energy are 

important collider parameters for high energy physics experiments. To achieve a 

higher total number of events, one may increase the center of mass energy since 

the PP cross section increases with energy.[5] It is however diflkult to increase 

the energy of a collider once the collider is built since the achievable maximum 

energy is determined by the machine radius and the peak magnetic field. We can, 

however, improve the machine performance by increasing the peak luminosity or 

the luminosity lifetime, or both at the same time. 

1.2 Motivation of the work 

The luminosity of a collider is proportional to the number of particles NP and 

Np of each bunch, the beam revolution fkquency frev, the number of bunches 

NB and inversely proportional to the square of the beam size u (round beam 

assumed), 

(l-4) 
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At each crckng point, strong electromagnetic forces generated by one beam 

perturb transverse motions of parti& in the other beam. The betatron tune, 

the number of transverse oscillations a particle makes during one revolution of 

the machine, may change significantly due to the electromagnetic forces. The 

shift of the txmes is a function of the oscillation amplitude and this leads to a 

spread of betatron tune in each beam. When the tune spread is large enough to 

overlap resonance lines, the beam size increases and the particles in two beams 

can be lost, thereby limiting the maximum luminosity and shortening the lumi- 

nosity lifetime. Two possible solutions exist for preventing the luminosity decay. 

One is to separate the beams at unwanted crossing points by either electrostatic 

separators[6] or using two separate rings[7]. These techniques can reduce the 

beam-beam &ect, but usually at a very high cost. 

The secrxrd, a new approach described in this dissertation, is to choose the 

optimum wo&ing point in the tune space in order to provide a larger resonance- 

free space that can accommodate the tune spread. The largest resonance&e 

space exists near an integer in tune space.[8] The disadvantage of this is that 

any integer is a very strong resonance line and it may cause beam loss and orbit 

distortion problems, so that accelerator physicists have always avoided choosing 

the working point near an integer. The experiments described in this disser- 

tation are intended to investigate the beneSts and difficulties associated with 

operating a ha&on collider with betatron tunes near an integer. In particular, 

experiments have been performed to End a way to maintain a-stable storage of 

two colliding beams near integer tune values when the tune shift is too large to 

be accommodated elsewhere in the tune space. 
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EFFECTS OF BEAM-BEAM INTERACTION 
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In a colljder, two beams collide with each other. The electromagnetic force 

between the beams at each crossing point distorts the motion of the particles 

in each beam. These distortions and their consequences are called beam-beam 

interaction effects. In this chapter, the motion of a single beam in an accelerator 

will be discussed first. Following this, the electromagnetic force between two 

beams will be examined together with the tune shift and tune spread caused by 

this force. 

2.1 Motion of a single beam in an accelerator 

Storage rings are composed of sequences of magnetic elements. The sum 

of all magnetic elements, their strengths and placements, is called a “lattice”. 

The motion of a particle in a lattice is described relative to the reference orbit 

corresponding to the reference momentum po. The periodic orbit which closes 

upon itself after one turn is called the closed orbit. If one keeps only the linear 

terms of the magnetic field around the reference orbit, the homogeneous equations 

of motion have the following form for the horizontal and the vertical motions:[9] 

d2z 
-j-J + &(s)z = 0, 

d2y 

(2 - 1) 

(2 - 2) 

The variables z and y are, respectively, the horizontal and vertical deviations 

from the reference orbit, s is the distance along the reference orbit, and K(s) is 
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a function of s defined by the lattice. For a ring with circumference C, K(s) is 

periodic in s. 

K(s + C) = K(s) (2 - 3) 

In this case the corresponding homogeneous equations are known as Hill’s equa- 

tion. The focusing force is represented by K(s). The motion is an oscillation 

about the reference orbit with an amplitude which depends on s. It is called 

betatron motion because it was first studied in betatrons. 

The solution of the equations can be written in a pseudo-harmonic oscillation 

form introduced by Courant and Snyder.[lO] The solution x and it’s derivative 

X’ E dx/ds can be written as 

2’ = -Jm[sin$(s) - $ cos$(s)] 

wjth phase function 

$(s) = JFGO) + 1: +) 

(2 - 4) 

(2 - 5) 

(2 - 6) 
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where co and $(O) are two constants given by the initial conditions. /3(s) is called 

the amplitude function or beta-function and it is periodic in s with the period 

C, p(s + C) = p(s). It is th e solution of the differential equation 

The number of betatron oscillations in one revolution is the tune V, 

S+c ds’ 

2.2 Beam-beam force 

(2 - 7) 

(2 - 8) 

Particles circulating in a collider ring experience localized periodic kicks 

when crossing the opposing beam. Consider a head-on collision between two 

round Gaussian bunches which have length L with n particles per unit length 

and with a transverse charge density distribution[ll) 

P(r) = se -r2/2a2 (2 - 9) 

where (T is the rms radial beam size and e is proton charge. The electromagnetic 

force on a test particle at radius f is 
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2=e(Z+hd) 

= e(Er + &cB4) ~6 
(2 - 10) 

with r’;, the unit vector in cylindrical coordinates (r, 4, z). 

One can obtain the electric field I$ and magnetic field I34 respectively from 

Gauss’ theorem and Amp&e’s law 

_ e-r2/2o2 
> 

Therefore 

Fr = k2;’ -(l + Dr2)i(1 - e-r2/2u2) 
v 

(2 - 11) 

(2 - 12) 

(2 - 13) 

where the negative sign corresponds to oppositely charged particles and the posi- 

tive sign corresponds to particles of the same charge. The angular kick Ar’ which 

a particle receives from the interaction force Fr is 

A# 
L 1 =F,-.- 

SC e(W 
(2 - 14) 
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where Bp is the rigidity of the particle. 

In the case of proton-antiproton interactions such as in the Tevatron collider, 

the angular kick Ax’ corresponding to the beam-beam interaction is given by 

&’ = - Ne 
~AQ, . ,&c - (BP) 

. I(1 _ e-‘2/2a2) 
r 

(2 - 15) 

where N = nL is the number of particles per bunch. 

The angular kick Ar’ is plotted in Fig.1 for the proton-antiproton interaction 

as a function of the betatron amplitude of a test particle. The amplitude, when 

normalized to the rms beam size Q, can be divided into three regions: 

Within the region 5 < 1, using the expansion of e-r2/2”2, one obtains a kick 

Ar’ which is linear in r 

Ar’ x - Ne r 
271~~ - &c - Bps’ (2 - 16) 

This is a quadrupole-like kick, because it is similar to a kick which a particle 

receives from a quadrupole magnet. In the Hill’s equation, it corresponds to a 

change in the restoring force which alters the betatron tune. While a quadrupole 

magnet focuses in one direction and defocuses in the other, the PP force focuses 
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Figure 1. The angular kick Ar’ for the proton-antiproton interaction as a function 

of the betatron amplitude of a test particle. The amplitude is normalized to the 

rms beam size u. 
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in both horizontal and vertical directions and, for small amplitudes, both tunes 

are increased corresponding to the beam-beam interaction. 

For the region with $ R 1, the force is more complex and not linear in r. 

A particle in this region receives a kick from the beam-beam interaction force 

which-will drive all of the even numbered resonances, because the potential due 

to the antisymmetric force (2-13) is an even function of x and y which can be 

expanded in an even-order series. 

The kick due to long-range interaction, when f >> 1, varies slowly with r. 

It corresponds to a dipole-like kick. 

2.3 Linear tune shift 

For a small amplitude, (5) << 1, the beam-beam kick is equivalent to what 

is given by a thin lens of focal length f 

Ax’ &- 

and 
AY’ ;= y. -- 

From (2-16), 

Ne 1 
2na v-/%c-Bp'2a2 

NrP 
= 02Pr2Y, 

(2 - 17) 

(2 - 18) 

(2 - 19) 
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where rp is the classical proton radius 

e2 
rp = 4arv(mpc2)’ 

The transformation through the beam-beam interaction in each transverse 

direction is described by the matrix 

(2 - 20) 

where k(s) is the focusing function due to the beam-beam interaction. To in- 

vestigate the perturbation of the lattice function by this lens, we compute the 

perturbed one-turn transfer matrix 

where a and 7 are Courant-Snyder parameters and ~1 z 2x1~ is the phase advance 

in one revolution. 

Carrying out the multiplication and equating the trace of the matrix, we 

End 



2cosfi = 2 cos p. - (PO sin po)lc(s)ds. (2 - 22) 

Adding the contribution from all the crossings over the whole circumference, we 

obtain, in the lowest order in If(s), 

. 

A(cos cl) = cos /L - cos /LO = -y 
I 

,” Po(s)Q)ds. 

The quantity t =- 4t, oc Po(MsW I 

(2 - 23) 

(2 - 24) 

is known as the “linear tune shift” parameter of the beam-beam interaction. The 

linear tune shift is 

AU AP =- N- 40s d 
2n - 27r( sin po) (2 - 25) 

= c 

2.4 Tune spreads 

The horizontal and vertical tune shifts Av are directly related to the slopes of 

the beam-beam forces, @f/a x and af/&, at the position of the test particle.[12] 

As the slope is a function of the position, the tune shift of small-oscillation 

particles is c and the tune shift for large oscillation particles is smaller. The tune 

shift is the function of a position of the particles at the interaction point. Since 
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a beam contains a distribution of particles of various amplitudes, the position of 

each particle could be from 0 to amplitude and it ends up with a tune spread. 

Since the maximum slope of the beam-beam force 8f/ax and af/& is at z = 0 

and y = 0, the tune spread of the beam is equal to the amount of tune shift of 

small amplitude particles: 

Tune spread 5 ItI. (2 - 26) 

2.5 Stabifty of linear motion 

In the linear approximation, the motion of a particle is stable only if the 

absolute value of the trace of the one-turn transfer matrix is less than 2, that is 

-1 5 cos /Lo - 27rtsinpo 5 1. 

Considering the region of 0 < p. < ?r, one obtains the stable region in (cc, t) 

space: 

-$ t=4Cco/2) I t I & cot(po/2). (2 - 27) 

In the region of ?r < c(~ < 27r, one obtains the same result. Fig.2 shows the 

stable region in (p, <) space. 
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Figure 2. The stable region in (p, 4) space. 
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2.6 The width of the stopband 

The expression (2-25) is the lowest order approximation and terms of second 

and higher orders in k are neglected. When sin cc0 is near zero, that is, when 

the tune ~/27r is near an integer or a half-integer, the second order contributions 

must be considered. If there is a perturbation at sl and another at ~2, the 

one-turn matrix at sl is 

1 0 1 0 
M(Sl) = B A - 

-k(q)dsl 1 1 I -kWh 1 1 
(2 28) 

where A is the matrix of the unperturbed system from sl to sp, and B is the 

matrix from s2 to sl + C. We have 

M(q) = M,(q) - ((RBA)k(sl)dsl 
(2 - 29) 

- (BRA)k(q)dsz + (RBRA)k(sl)k(s2)ds1ds2 

where 

The trace of M(q) is 

0 0 
R= I I 10 - 

2cos/A = 2 cos po - (kl@q + k&&2) sivo 

+ B12Anklk2dslds2 
(2 - 30) 



sin PO cosp- cospo = -2 Jo WB(4~ 

1 c 

J / 

c 

+2 0 dS1 ds2U2h92 sin b(42 - &)I sin[Po - 442 - dl)l. 
$1 

(2 - 31) 

The width of linear resonance stopband is the width of the range of v. = po/27r 

over which the absolute trace of the perturbed one-turn matrix is bigger than 2. 

In (2-31), 4 E $/ u is the normalized phase. 

Consider the case where v is nearly an integer: 

v=p+c (2 - 32) 

with p an integer and lej < 1, then to second order in E 

sin p. 25 2n&; cospo a 1 - 29r2E2 (2 - 33) 

Neglecting terms of higher than the second order in E and k, and replacing the 

integral over the triangular region by a half of the integral over the square region, 

we obtain, after some manipulation, 

1 
cos p - 1 = -2nV - 7rrEI() + -(I Izp I2 - Io2), 

8 
(2 - 34) 



where, for any n, 

In = 
I 

oc /9(s)k(s)e-inws 

Solving for cos p - 1 = 0, we have 

& - = IO f I I2p I 
4n 

so that the width of the stopband is 

&/ 1 I2P 1 = - = &I ~c~(s)k(s)e2i~wis I. 
2R 

(2 - 35) 

(2 - 36) 

(2 - 37) 

Since k(s) could be induced by beam-beam interactions or could be an error in 

quadrupole strength, this expressions for 6~ is general when the unperturbed 

tune is close to an integer. 

Similarly, the width of the half integer stopband is 

& = I 12p+l I 
2n 

= & A” /3(s)n(s)e2’(~‘wis I. (2 - 38) 

This expression for 6~ should be valid for either horizontal or vertical direc- 

tion if there is no coupling between the two directions. Near an integer, many 

nonlinear resonances exist but only the linear and uncoupled resonances are con- 

sidered in the discussion since the linear resonances are in general more serious 

than nonlinear resonances near integer or half integer tunes. 
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WORKING POINT IN TUNE SPACE 



3.1 Working point in tune space 

The betatron tunes Vf, and u, are defined to be the number of transverse 

oscillations per revolution while the synchrotron tune us is defined as the number 

of longitudinal (i.e., momentum) 0sciUations per revolution. It follows that 

vh = fh/frev 

vv = fvlfrev 

(3-l) 

(3 - 2) 

us = fs/frev (3 - 3) 

These three tunes define a three dimensional tune space where a collider 

working point (Vh, vv, vS) is a point in the three dimensional tune space. However, 

only the transverse motion of beams is studied in this work and a working point 

always refers to a point (Vh, vv) in the two dimensional sub-tune space. 

To achieve high luminosity and luminosity lifetime, we must keep particles 

away from resonances so that the motion of betatron oscillations of particles is 

stable. 

3.2 Resonance 

In general, resonances leading to beam instabilities are of the form, [9] [lo] 

WI 



23 

(3 - 4) 

where m, n and p are all integers. The sum of jmj and Inl: 

b-4 + InI 

is called the order of the resonance. If m and n are opposite in sign, the resulting 

motions are coupled but they remain bounded. The order of the resonance is 

related to the order of the magnetic multipole field component which drives the 

resonance. For examples, 2nd-order resonances are driven by the quadrupole 

component and 3rd-order resonances are driven by the sextupole component.[9] 

3.3 Tune diagrams 

It is helpful to use a tune diagram, Vh ws. uv plot with resonance lines, to 

analyze a working point. A tune diagram is usually plotted from integers (k, Z) 

to (k + 1, I + 1) since the fractional parts of the tunes determine the distance to 

the resonance condition. Fig.3 is a typical tune diagram with resonance lines up 

to 5th order. 

In the tune diagram, one can choose a point to avoid resonance lines up 

to any specified orders. However, one must consider a resonance free area for 

a working point, because in a collider the tunes of all particles in a beam are 

not identical. As described in chapter II, beam-beam interaction causes a tune 

spread. Tune spread is also produced by the chromatic nature of the quadrupole 

focusing. The tune spread due to chromaticity [ is given by 



k k+l 
Horizon-h1 hme 

Figure 3. A two-dimensional tune diagram with resonance lines up to 5th order. 

k and I are integers. 



25 

AP Av=% 

where 9 is the beam momentum spread. Beam-beam interactions lead to a 

tune spread of 

AY = NB * NrpS -=NB. N+q& 
4nu27 47reN (3 - 6) 

where NB is the number of bunches in the ring and rP is the classical proton 

radius. 

For the Tevatron collider, the typical value of t is 3 and the rms momentum 

spread is 1.5 x low4 at 900 GeV. Thus the tune spread due to this momentum 

spread is approximately 5 X 10w4. 

The beam-beam tune spread of the antiproton beam for the 1989-1990 

collider operation was 0.02 with 6 proton bunches. The working point was 

(19.405,19.41) as shown in Fig.4. It lies between the fifth-order and seventh- 

order resonance lines. The separation between these resonances is 0.028. 

As higher luminosity is required, stores with 36 proton bunches (with 36 

antiproton bunches) are expected. With the same proton bunch parameters, the 

beam-beam tune spread will then be 0.12. A larger resonance free area will be 

needed to accommodate this spread. 



Vertical tune 
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3 
8 



27 

3.4 Integer VS. half integer values 

The largest resonance free area is found near an integer. One can show that 

the Nth-order resonance line is separated from an integer by &. For example, 

the 7th order resonance is separated from an integer by l/7 =0.143. Fig.5 is a 

tune diagram near 19 plotted from 19.0 to 19.2 for both vh and vu with resonance 

lines up to the 7th order. The 7th order resonance line is near 19.14. 

Consider 6int, the width of the stopband of an integer resonance, and 6N, 

the Nth-order resonance width. One may conclude that, near an integer, the 

resonance free area is 

(3 - 7) 

if the Nth-order resonance is assumed to be the lowest order to be avoided. Near 

a half integer, the separation between the Nth order resonance line and the half 

integer line is given by 

1 
z 

when N is an even number 

1 
2N 

when N is an odd number. 

Fig.4 is a tune diagram plotted from 19.3 to 19.5 for both vh and vv with res- 

onance lines up to 7th order. Comparing the tune diagram near 19.0 with that 

near 19.5, one can see that the distance to even order resonances is the same in 



Vertical -tune 

19 19.2 
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two cases while, for the odd order resonances, the distance is twice as large near 

19.0. 

Although the beam-beam force described in chapter II is an odd function 

of 2, which means that the force drives the even order resonances only, the real 

beam in the Tevatron collider is not completely symmetric and the beam-beam 

force includes all of the odd and even terms and drives all the resonances. In 

the 1989-1990 Tevatron collider run, large antiproton beam losses were observed 

on the 5th and 7th order resonances near 19.5.[14] A working point near an 

integer is preferred for the Tevatron collider over a point near the half integer 

because of the reduced density of odd-order resonance lines, which are known to 

be important. 

Considering these effects, we chose to investigate the region from 19.05 to 

19.08 for the working point which has a resonance free space of 0.09 to 0.06 ( up 

to the 7th order ) to accommodate the beam-beam tune spread. 
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The measurement technique used for the experiments which are covered in 

chapters V, VI, VII, are briefly described in this chapter. 

4.1 Beam intensity 

The device installed in the Tevatron to measure the beam intensity is a 

resistive wall pickup which is a ceramic insert in the conductive vacuum tube. 

The signal is picked up on the resistors that bridge the ceramic insert. See Fig.6. 

A modulated beam current Ib is accompanied by a “wall current” IW which 

is induced in the wall of the vacuum tube. Iw has the approximately equal 

magnitude but opposite direction of Ib. As a result, the voltage induced on 

the resistors measures the beam current. The time integral of the current is a 

measure of the intensity. A pickup of this type has a bandwidth of several GHr 

giving a longitudinal profile of the beam with a resolution of some 100 ps. In 

Fig.7 the measured bunch length is approximately 6 ns. 

4.2 Closed orbit 

The closed orbit is measured with beam position monitors (BPM) which 

are more or less uniformly distributed around the Tevatron ring. There are 216 

BPMs in all, 108 for vertical and 108 for horizontal position measurements. The 

data from the BPMs give the vertical and horizontal positions of the closed orbit. 

Fig.8 is an example of the closed orbit display available in the control room. 

A BPM is a pair of stripline pickups as shown in Fig.9. As the beam 

passes between the. two striplines, electromagnetic fields induce voltage across 

the resistors which is transmitted along the coaxial cables. The relative strengths 

of the signals on the two cables is used to determine the beam position. 
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Figure 6. A resistive wall beam intensity pickup 



Figure 7. A typical beam intensity measurement 

Vertical scale is SOmV/diu. and horizontal scale is 2ns/div. 



Figure 8. A typical closed orbit measurement in Tevatron 

The circumference of the Tevatron is about 6.28km divided into 6 sectors. 
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Figure 9. A stripline pickup beam position monitor and its cross section with 

two strips 



4.3 Tunes 

4.3.1 Betatron tune measurement. 

The betatron tune is the number of transverse oscillations the beam makes 

about the closed orbit during one revolution in an accelerator. The tune is 

basically a property of the machine rather than of the beam, although it may 

depend on the beam intensity 

A straight-forward way to measure the tune is to excite a bunch of particles 

to perform a coherent oscillation and measure the position of the beam center at 

all pickups around the ring for one turn. Subtracting the previously measured 

closed orbit from these readings and then normalizing to the square root of the 

betatron function, one obtains a sinusoidal function of betatron phase. The 

frequency of the curve is the full value of tune. This is a convenient way to 

measure the integer part of the tune and to see whether the tune is below or 

above half integer, but the fractional part can not be found so reliably in this 

method. 

Usually, the accurate value of the fractional part is obtained by observing 

the signal from a single pickup which records the position of the beam for many 

revolutions. By Fourier transform, one can obtain an accurate fractional part of 

the tune value. For example, the dots in Fig.10 show the transverse position of 

a bunch on ten successive turns. One may draw a sinusoidal curve through them 

to obtain the curve labeled 0.41. However, other sinusoidal curves with other 

frequencies also pass through the same data points. In Fig.10, the curves labeled 

-0.59 and 1.41 are such examples. In general, possible frequencies are 

(4 - 1) 
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where frcV is the revolution frequency and m is any integer. 

A system to measure tunes in the Tevatron is shown in Fig.11. A sensitive 

detector resonant at 22 GHz picks up the beam position. After a bandpass filter, 

a Gequency convertor converts the signals to audio frequency. These signals are 

transmitted to the main control room where a spectrum analyzer performs a Fast 

Fourier Transform( FFT). 

A tune measurement of the Tevatron stored beam with tune near 19 is shown 

in Fig.12. 

4.3.2 Tune control. 

Control of the betatron tunes for the Tevatron is done by changing the 

strength of two circuits of quadrupole correction magnets. The magnets in one 

circuit are near the horizontally focusing main quadrupoles and primarily change 

the horizontal tune. The magnets in the other circuit are near vertically focusing 

main quadrupoles and primarily control the vertical tune. 

The change in tune by a single quadrupole, 6v, is given by Eq (2-22) or 

approximately given by its linear form: 

(4 - 2) 

where 6[B’& is the change in the integrated quadrupole strength, Bp is the 

magnetic rigidity of the beam and & is the beta function at the quadrupole 

location.[10][13] 
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Figure 10. Beam position on ten successive turns and the three lowest frequency 

fits. 
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Figure 11. A block diagram of tune measurement system at Fermilab 
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Figure 12. A tune measurement of the Tevatron stored beam with tune near 19. 

The right peak is the revolution signal and the left two peaks are horizontal and 

vertical tune signals. Measured fractional parts of horizontal and vertical tune 

are 0.08 and 0.09 
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4.4 Beta function 

Measurement of the beta function at one location can be made by varying 

the strength of the quadrupole magnet at that location. This is clear from 

the relation given in Eq (4-2). In order to interpret betas in horizontal and 

vertical directions in an unambiguous manner, any existing linear coupling of 

two directions must be minimized. 

Plotting 6u as a function of 6(B’Z), one obtains the beta function at that 

location from the slope of the curve. Fig.13 is an example of a beta function mea- 

surement at the location (F34)in the Tevatron ring. In principle, one can measure 

the beta function wherever the strength of a quadrupole at that location can be 

varied. However, only a few quadrupoles can be independently controlled in the 

Tevatron and the beta function can be measured at these locations only. One 

way to check the measured beta function along an entire machine is by comput- 

ing the beam optics. Computer codes called SYNCH and TEVLAT were used to 

compute the beta function and other parameters of synchrotrons. By comparing 

the beta functions computed from SYNCH and TEVLAT with measured beta 

function at several locations, one can estimate the reliability of the calculated 

values. 

Fig.14 shows the measured and calculated values of beta functions for the 

Tevatron 150 GeV lattice.[l5] 

4.5 Transverse emittance 

4.5.1 Beam size measurement. 

A flying wire scanner, a fast moving wire crossing the circulating beam, is 

used to measure the beam size in some hadron storage rings. A speed of 20m/sec 

has been achieved with a 25~~77~ diameter carbon wire. When the wire is crossing 
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Figure 13. A beta function measurement at the location (F34) in the Tevatron 

ring by varying the strength of the quadrupole magnet at that location. The 

fitting coefficients of the polynomial series are shown on the right side of the 

figure, 
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Figure 14. Measured and calculated values of beta functions for the Tevatron 

150 GeV lattice. The points are measured values. 
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the beam, charged particles are produced from nuclear collisions with the carbon 

wire. A combination of a scintillator and a photomultiplier is used to measure the 

intensity of the charged secondaries and the beam transverse profile is obtained 

by plotting the photomultiplier circuit output as a function of the digitized wire 

position. A transverse profile of a beam measured by the flying wire is shown in 

Fig.15. The beam size cr is defmed as the rms of the beam profile. The emittance 

and momentum spread of the beam are obtained through measurements of beam 

size. 

4.52 Emittance. 

Beam size 6, transverse emittance E and the momentum spread (Ap/p) in 

Gaussian distribution are related as follows: 

o2 = E/3 + ($lq2 (4 - 3) 

where p is the local beta function and D is the local momentum dispersion func- 

tion calculated by SYNCH. The momentum dispersion function can be obtained 

by measuring the closed orbit while varying the the frequency of acceleration 

voltage. 

Once the beam sizes are measured, the emittances are calculated from the 

relation (4-3). In the horizontal plane, wires are needed at two different positions 

in order to find the emittance and the momentum spread separately,. In the 

vertical plane, the momentum dispersion function should be zero, since there is 

no bending in the vertical plane. Only one wire is required to find the vertical 

emittance of the beam. 
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Figure 15. The horizontal profile of beam near tune of 19 is measured by the 

flying wire. The calculated rms size of the beam is 1.9 mm. 
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4.6 Luminosity 

Luminosity fZ can be calculated from the measured beam parameters, 

(4 - 4) 

where Np is the number of protons per bunch, Np is the number of antiprotons 

per bunch, NB is the number of bunches per beam (usually numbers of proton 

and antiproton bunches are the same), f rev is the revolution frequency, and ox 

and cry are the rms beam size in the horizontal and vertical planes, respectively, 

at the interaction point (IP). Th e b earn sizes are calculated from the measured E 

and+ using calculated values of ,B and D at the IP. In the 1989-1990 Tevatron 

collider run, the typical measured luminosity was 1. x 1O34 rnW2sB1. 

The luminosity can also be calculated from the interaction rate as measured 

from scintillation counters surrounding the IP, where R = ,!&,t. R is the rate, 

and atot is the part of the nuclear cross-section corresponding to the solid angle 

defined by the scintillation counters. The measured luminosity in the same run 

by this method is about 10% less than the other one. 
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5.1 The control of the closed orbit 

The ideal closed orbit should be in the middle of the available aperture. 

Orbit distortion near integer tunes is a serious problem in any synchrotrons for 

the following reason. 

The closed orbit distortion at position s in a ring due to the error in the 

integrated magnetic field of the lath dipole or misaligned quadrupole is 

x(s) = VmiG w% 
-COSIV~ - IW - w 2 sin(nv) Bp (5 - 1) 

where ,9k and $k are the betatron amplitude and phase, b(B2)1, is the integrated 
. S(BZ)k dipole field error and. Bp 1s the resulting kick causing the closed orbit distor- 

tion, all at position li. When the tune v is near an integer, the factor l/sin(rY) 

is so large that a small dipole error tS(Bl)k may lead to significant closed orbit 

distortions. Fig. 16 shows this factor l/sin(rv) as a function of the fractional 

part of I/. One can minimize the closed orbit distortion by using an algorithm 

for finding the correction dipole settings. We have used the 3-bump algorithm. 

Consider a particle travelling on the ideal design orbit. Suppose that at 

s= sl, it is kicked by a dipole such that it experiences an angular deflection 

61. At s = s2 and 53, it is again kicked by dipoles and experiences angular 

deflections, 02 and 03, respectively as shown in Fig. 1’7. In order for the particle, 

which is on the design orbit at s 5 ~1, to end up again on the design orbit at 

s 2 ~3, we must have 

Pi sinW3 - $1) 
e2 = 91 - $ P2 sinM3 - $2) 

(5 - 2) 
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Figure 16. The factor of l/sin(w) 
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and 

$ PI Wb2 - vh) 
83 = 81 - 

P3 sin(fb3 - +2) * 
(5 - 3) 

This is called a “localized three-bump”. 

The important property of a localized three-bump is that any closed orbit 

deviation at s2 can be created or, equivalently, any known orbit distortion at 

s2 can be corrected without changing the positions outside the bump region, 

sl < s < ~3. The correction of the orbit distortion in the whole ring is achieved 

with the three-bump algorithm by stepping through each position measurement 

at the Beam Position Monitor (BPM) and adjusting the setting of three closest 

correction dipoles such that the corrected closed orbit would move to a desired 

position everywhere. This method works well when there is a BPM at each 

correction dipole position, as in the Tevatron. 

There are 108 BPMs and 108 correction dipole magnets in each transverse 

direction to control the Tevatron orbit as described in chapter III. An on-line 

computer program reads the BPMs and uses the S-bump algorithm to calculate 

the required correction dipole settings. Necessary machine parameters such as 

@s and $s are stored in the program. Fig. 18 shows the BPM reading of the 

corrected closed orbit of the Tevatron when the beam is stored for collisions at 

a tune of 19.05. The rms distortion is less than lmm, which is about the same 

order as the distortion at the standard tune value of 19.4. 

There was a concern that, near integer tune values, there might be an ex- 

cessive sensitivity of the orbit distortion on the magnet power supply drifts. 

Experience showed, however, that the orbit was stable for several hours, with no 

corrections required after the initial adjustment. 
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Figure 17. Three-bump-correction 
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Figure 18. Measured position of the closed orbit at the BPMs after an orbit 

correction for a collider store in Tevatron at the tune of 19.05. The rms distortion 

is less than lmm. The bump in horizontal plane at EO is- needed for injection 

and bad BPMs are near A0 and BO. 
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We conclude that, near integer tunes, the Tevatron closed orbit can be 

corrected with the 3-bump correction algorithm and that it remains stable for 

several hours at tunes of 19.05. This verifies that the fields of the superconducting 

dipoles and the power supplies of the the correction dipoles are stable enough for 

collider operation near integer tunes. 

5.2 Stopband width and compensation 

The stopband width determines how close the working point in tune space 

can be from a resonance line. The amplitude of the transverse oscillation grows 

and the particles will be lost on the wall of vacuum pipe when the working point 

is inside the stopband. Near an integer p, the width 5 of the integer stopband 

due to quadrupole errors is 

(5 - 4) 

where k(s) is the local quadrupole error, 4 = 4/v is the normalized phase advance 

and C is the circumference, as described in chapter II. 

Two independently controlled quadrupole circuits are installed in the Teva- 

tron. Since the width is the magnitude of a complex integral, it needs two 

independent parameters for the correction. 

In the experiment when the tunes are close to 19, resonances of the form 

2uh = 38 and 2vV = 38 must be controlled. The compensation circuit for the hor- 

izontal plane is shown in Fig. 19. Two quadrupole magnets of the same strength 

but with opposite polarity generate the 38th harmonic component without in- 

troducing average component which will give rise to. a tune shift. 



Figure 19. The compensation circuit for the vertical plane. Two quadrupole 

magnets in series, such as B23 and B33 or B27 and B37, with opposite polarity 

generate the 38th harmonic component without introducing a tune shift. The 

phase advance S+ between neighboring quadrupole magnets is 135’. Two current 

sources, 11 and 12, are independently controlled and create two orthogonal vectors 

in phase space, which give the right phase and magnitude to cancel the integral 

in Eq (5-4). 
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5.3 The stopband measurement 

Stopband width is measured by moving tune close to the resonance line. 

Holding the horizontal tune at 19.09, we moved the vertical tune to 19.025 

without any effect on the beam stability. This demonstrates that the half width 

of the vertical integer stopband at v = 19 is less than 0.025 with the injection 

lattice.[l6] Similarly, the horizontal integer stopband is measured to be less 0.025. 



CHAPTER VI 

EXPERIMENT III 

PROTON-ANTIPROTON STORES 

WITH A LARGE TUNE SHIFT 

56 



57 

6.1 Working point in tune diagram 

As described in chapter III, it is important to choose a working point (Vh, vu) 

in tune space away from resonances. 

During normal Tevatron collider operation, the working point was set to 

19.41 and 19.42 in the horizontal and vertical planes respectively. A tune diagram 

plotted from 19.3 to 19.5 (Fig.20) s h ows all the resonance lines up to the 7th order 

in tune space. The working point (19.41,19.42) is between the 5th and 7th order 

resonances with a separation of 0.028. 

In a P-P head-on colliding store, tunes are always shifted up because of 

beam-beam effects which are equivalent to focusing quads. In the 1989-1990 col- 

lider run, a typical’store consisted of 6 proton bunches and 6 antiproton bunches 

(6 on 6) with average bunch intensity of 6.26 x 1O’O (protons) and 2.04 x lOlo 

(antiprotons).[l7] The total of 12 crossings arising from 6 on 6 gave a combined 

antiproton tune shift of 0.02. Since higher luminosity is desirable for colliding 

experiments, more bunches and higher intensities per bunch are needed. As a 

consequence, a larger beam-beam tune spread will occur. Since the proton beam 

is much stronger, the antiproton beam has a larger tune spread. Some antipro- 

tons will cross the 7th order resonance and there will be an intensity loss in the 

antiproton beam. 

Fig.21 is a tune diagram plotted from 19.0 to 19.2 with all the resonance 

lines up to the 7th order in tune space. The separation from the Nth order 

resonance to an integer is l/N. For example, the separation from the 7th order 

resonance to 19.0 is l/7 = 0.143 which is much larger than the distance between 

the 5th and 7th. 

When the working point is set to (19.05, 19.051), the resonance-free area 

up to the 7th order is 0.09. The separation of 0.09 is more than four times the 

maximum tolerable tune spread of 0.02 at the standard tune of 19.42 with six 

bunches on six bunches. 
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Figure 20. A tune diagram plotted from 19.3 to 19.5 shows all the resonance 

lines up to the 7th order in tune space. The working point is (19.41, 19.42) and 

the antiproton tune is shifted upward due to the beam-beam interaction. 
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Figure 21. A tune diagram plotted from 19.0 to 19.2 shows all the resonance 

lines up to the 7th order in tune space. The working point is at (19.05,19.051) 
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6.2 P-P store with large tune shift 

One store was attempted which had as its goal a demonstration that the 

luminosity lifetime would be long even with large tune shifts if the tunes were 

close to an integer. Unfortunately the proton beam was too strong and the 

antiproton tune shift was large enough to move the antiproton tunes into a region 

with many resonances. Nevertheless, the beam lifetimes were quite good, with 

little emittance growth. 

This antiproton-proton store was at 150 GeV with horizontal and vertical 

proton tunes of 19.06 and 19.08, respectively. There were 36 proton bunches and 

one antiproton bunch. The total proton intensity was approximately 1.0 x 1012 

and the antiproton intensity was 2.5 x log. The proton tunes are thus hardly 

affected by the antiprotons. On the other hand, the shift in antiproton tune was 

large. The shifted antiproton tunes are calculated to be 19.14 in the horizontal 

plane and 19.16 in the vertical plane. This places the antiproton tunes between 

6th and 8th order resonance lines. The lifetime of the antiproton bunch was 

measured to be approximately eight hours when extrapolated from the data in 

Fig.22. This beam lifetime is unusually long for the calculated tune shift of 

0.08.[18] 

This long lifetime is understood as a case where the emittance of the low 

intensity antiproton bunch was small enough to be mostly within the linear region 

of the strong proton beam-beam force. That is, the antiproton tunes were shifted 

by .08 but with little tune spread. The proton beam is acting as a quadrupole and 

the tunes are simply shifted to a region between significant resonances. While 

the experiment did not address our proposition that regions near integers are 

more benign, it does seem to be an example of a rather unique operating mode. 

Namely, there is a good lifetime even with a large tune shift of .08 when the 

larger proton beam simply acts as a lattice quadrupole at each of the 72 proton- 

antiproton crossing points. 
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Figure 22. Tevatron Collider antiproton-proton intensities over time for a store 

with nominal tunes near v = 19.07. 
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The common mode noise (see 7.2.1) of the main power supply bus is found 

to be the major cause of emittance growth in the Tevatron near integer tunes 

where the betatron frequency is low enough to overlap the noise spectrum of the 

power supply. This condition is true for any machine of large circumference with 

low betatron frequencies. 

7.1 Model of emittance growth 

In the presence of tune spread, coherent bunch oscillations become incoher- 

ent and this leads to a growth in the beam emittance.[19] 

Consider a coherent oscillation of the beam center with amplitude 

A(t) = h(t) sin (27rfovt) (7 - 1) 

where z(t) = s~e-~l.‘, and r represents the time constant of the rms beam 

envelope and is directly related to the tune spread. The beam has a normalized 

emittance EN (enclosing 95% of particles) and associated beam size 0b at t = 0 

given by 

Ob(o) = [~(;‘)]1’2 
f r 

(7 - 2) 

where (&yP) is the relativistic factor and ,f3 is the betatron amplitude function at 

the point of observation. The amplitude of the betatron oscillation of individual 

particles is a constant in the case of no interactions with other particles and the 

field is linear, 
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x2(t) + ob2(t) = x2(o) + ob2(o) = COnstffnt (7 - 3) 

hence 

c%2(t) = q2(0) + 2&l - 9/r) 

or 

so that 

w(t) = w(O) + W13rr~) 2 p x0 (1 - e.+ 

&v(t) _ W3r~r) 2 2 
dt P TX w 

(7 - 4) 

(7 - 5) 

(7 - 6) 

To find out the relation between T and the tune spread Av , take the Fourier 

transform for the complex form of Eq. (7-l). 

3{ ~xoe-t~y-jwot 1 = 60 
(w - wo) -j/T 

(7 - 7) 
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here j is n, wo = 2nfovg and w = 27rjou. We may identify the amplitude 

FWHM of the resonance 

or the tune spread as 

Substituting for r yields 

dw(t) -= 
dt 

4~~2fo(h~)A~x2~t~ 
P 

(7 - 8) 

(7 - 9) 

7.2 Emittance growth due to common mode noise 

7.2.1 Noise spectrum. 

Common mode noise on the main power supply bus is the subject of study in 

this chapter. The common mode noise refers to the noise on the floating supply 

bus relative to ground and “common mode” is borrowed from electronics. 

Early studies of emittance growth in the Tevatron showed that the common 

mode noise on the main power supply bus did not lead to problems at tunes near 

19.42.[20] Th e measured noise at the betatron frequency was much smaller than 

the one at lower harmonics of the 720 Hz which comes from the six phase full 

wave SCR circuit of the main power supply. 
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Fig.23 is the spectrum of common mode noise on the power supply which 

powers the magnet bus current during a store. The spectrum shows a spike at 

180 Hz due to the SCR circuit, which is not fully balanced, and its harmonics 

decay exponentially as the frequency increases. 

The betatron frequency is the product of the revolution frequency and the 

fractional part of the tune. For a tune of 19.42, the betatron frequency is ap- 

proximately 20CHz(49Mz x 0.42) where the noise is negligible, while for a tune 

of 19.05, the betatron frequency is approximately 2.3 kHz and the noise is strong 

enough to cause emittance growth. [21] 

7.2.2 Injected noise. 

To study the relationship between common mode noise on the bus and 

beam emittance growth, different levels of common mode noise in the betatron 

frequency range were injected into the dipole magnet power supply bus. The 

growth rate of stored beam emittance near the integer tune linearly increases as 

a function of the square of common mode noise voltage. As described in Eq.(7- 

6) the growth rate in the beam emittance is proportional to the square of the 

amplitude of the coherent oscillation of the beam center and the amplitude is 

proportional to the noise voltage. 

Fig.24 shows this linear relationship for ‘a store in the Tevatron for a tune 

of 19.10. 

7.2.3 Suppressed noise. 

A suppression circuit for the common mode noise was designed and built to 

reduce the noise level and to lower the emittance growth rate. A block diagram 

of the suppression circuit is shown in Fig.25. 

When installed on the dipole magnet current power supply in the Tevatron, 

the suppression circuit reduced the common mode noise by 10 to 15 dbv. Fig.26 
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Figure 23. The spectrum of common mode noise on the power supply for the 

magnet bus current during a store. 
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The square of power supply noise (10m3 V”) 

Figure 24. The growth rate of stored beam emittance near the integer tune nf 

19.10 linearly increases as a function of the square of common mode noise voltage 
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Figure 25. Diagram of the noise suppression feedback circuit. The circuit is 

outlined by the dashed line. The power leads are connected to the main power 

supply. A passive filter was also used as shown. 



7 0  

s h o w s  no i se  spec t rum in  th e  f requency  r a n g e  f rom 1  to  4  kHz  w h e n  th e  circuit  is 

tu r n e d  o n  a n d  o ff. 

T h e  e m i tta n c e  o f th e  s tored b e a m  in  th e  Teva t ron  is m e a s u r e d  as  s h o w n  in  

Fig.27.  T h e  g r o w th  rate c h a n g e d  a p p r o x i m a te ly  by  a  factor  o f two in  e a c h  p l a n e  

w h e n  th e  no i se  suppress ion  circuit  w a s  energ ized .  O n e  w o u l d  h a v e  e x p e c te d  a  

factor  o f 1 0  f rom th e  1 0  d b  reduc t ion  in  no i se  vo l tage.  Th is  s u g g e s ts s t rongly  

th a t o the r  e m i tta n c e  g r o w th  m e c h a n i s m s  b e c o m e  d o m i n a n t, resu l t ing in  a  smal le r  

reduc t ion  th a n  e x p e c te d . 

7 .3  M e c h a n i s m  o f th e  e m ittance  g row th  

O n e  poss ib le  m e c h a n i s m  o f th e  e m i tta n c e  g r o w th  is th a t th e  s tored b e a m  in  

th e  Teva t ron  is s h a k e n  by  a  fluc tuat ion  o f th e  d ipo le  m a g n e tic fie ld .  A  fluc tuat ion  

o f th e  d ipo le  c o m p o n e n ts o f m a g n e tic fie l d  is fo u n d  ins ide  a  test  Teva t ron  d ipo le  

m a g n e t w h e n  th e  c o m m o n  m o d e  vo l tage  is app l i ed  to  th e  m a g n e t coi l  b u s . 

F ig .28  s h o w s  th e  circuit  fo r  th e  m e a s u r e m e n t in  M a g n e t Test  Faci l i ty(MTF) 

a t Fermi lab .  A  Teva t ron  d ipo le  m a g n e t is tes ted  u n d e r  c o m m o n  m o d e  exci tat ion.  

A  spec ia l  test  p i ckup  coi l  is p l a c e d  ins ide  th e  v a c u u m  p i p e  o f th e  Teva t ron  d ipo le  

m a g n e t a n d  c o n n e c te d  to  a  phase- lock  ampl i f ie r  wh ich  e l im ina tes  al l  f requenc ies  

o f th e  no i se  b u t th e  s igna l  f requency.  T h e  m a g n e tic fie l d  m e a s u r e d  ins ide  th e  

m a g n e t is i d e n tifie d  as  d ipo le  c o m p o n e n ts in  th e  f requency  r a n g e  u p  to  5 0  kHz. 

T h e  fie ld  s t rength is fo u n d  to  b e  constant  a l o n g  th e  ax is  o f th e  v a c u u m  p i p e  by  

m o v i n g  th e  test  p i ckup  coi l  a l o n g  th e  axis.  T h e  d ipo le  m a g n e tic fie l d  W . th e  

c o m m o n  m o d e  exc i t ing vo l tage  is s h o w n  in  Fig.29.  

T h e  typical  c o m m o n  m o d e  r ipp le  o f th e  m a g n e t p o w e r  supp ly  in  th e  Teva-  

t ron is 5 0  m V  in  th e  f requency  r a n g e  f rom 1  to  4  kHz. Us ing  th e  m o d e l  d is-  

cussed  in  th e  b e g i n n i n g  o f th is  c h a p ter,  o n e  g e ts a n  e m i tta n c e  g r o w th  rate o f 2 0  

d m 4 ( m W  ou r  pe r  m a g n e t fo r  th e  b e a m  s tored wi th a  tu n e  o f 1 9 .0 5 . 
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Figure 26. Tevatron main bus power supply noise spectrum with the noise sup- 

pression circuit off ( top plot ) and on ( bottom plot ). Vertical scale is 5 db/div. 

The frequency bandwidth is 47.7 Hz. The frequency ranges from 1 kHz to 6 kHz. 
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Figure 27. Emittance measurements for a store with the noise suppression circuit 

connected from 0 to 37 minutes and then disconnected. The upper curve is a 

measurement of the vertical emittance and the lower is the horizontal emittance. 

Tunes are 19.05. 
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Figure 28. The circuit for the measurement in Magnet Test Facility at Fermilab. 
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Figure 29. The dipole magnetic field vs. the common mode exciting voltage in a 

Tevatron superconducting magnet. 
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There are a total of 774 dipole magnets in series in the Tevatron bus. Al- 

though the test at MTF shows no common mode decay in a single dipole magnet, 

the measurement on the Tevatron superconducting magnet bus in the tunnel 

shows the decay on the bus. The decay is shown in Fig.30 as a function of fre- 

quency. The common mode ripple starts at the power supply in the magnet bus 

and decays as it passes through the chain of magnets, behaving as a damped 

transmission line. 

For the frequency of 2 kHz, the entire bus is equivalent to 17 magnets. 

Therefore, we should have a growth rate of 0.058 n(mm)(mr)/hour for the beam 

stored in the Tevatron with a tune of 19.05. This result is consistent with the 

measured value in Fig.27. 

With the feed back circuit, the emittance growth rates at tunes near 19.06 

are expected to be similar to those seen during early days of Tevatron Collider 

operation with tunes 19.41. This is based on the improvement due to the rela- 

tivistic factor and on the character of the SCR supplies, with operation at 900 

GeV. Since the emittance is equal to the EN/Y~, the emittance at 900 GeV is 

equal to one sixth of the emittance at 150 GeV. The ripple of power supply at 

900 GeV is half of the ripple at 150 GeV, because SCR supply is fully conductive 

at 900 GeV and is inducing less ripple. 
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Figure 30. Noise propagation in the chain of magnets in the Tevatron. Measure- 

ments for a signal frequency of 200 Hz and 2 KHz are shown. 
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Experiments have been performed at the Tevatron collider at Fermi National 

Laboratory to investigate the feasibility of operating a hadron collider with be- 

tatron tunes near integer values. These experiments investigated the benefits 

and difficulties associated with such a mode of operation and solved some of the 

associated practical problems. 

The results of the experiments indicate that there is no fundamental reason 

not to have hadron colliders with tunes close to integers. In hadron colliders, the 

large resonance-free area in tune space available near an integer is an advantage 

for allowing large beam-beam tune spreads. Keeping the beam tunes in regions 

free of low order resonances is essential for minimizing the emittance growth and 

maximizing luminosity lifetime. 

Two practical problems associated with betatron tunes near an integer value 

have been investigated in some detail. The first is the additional strong depen- 

dence of the closed orbit on errors in the dipole fields and quad alignment. With a 

program to correct the orbit distortion and the technological advances in control 

hardware, this practical problem was found to be easily solvable. 

The second practical problem was the increased sensitivity to power sup- 

ply noise resulting from the lower betatron frequency. Unexpectedly, the dom- 

inant source of emittance growth was found to be common-mode noise on the 

main power supply bus. Measurements on a test dipole magnet showed that the 

common-mode noise generates a dipole field in the magnet. Measurements of 

the transmission of the common mode noise along the magnet string furnished 

a model needed to predict the emittance growth rates, in agreement with those 

measured rates. 

A feed-back circuit was designed and constructed to reduce the common- 

mode noise on the main bus and was used successfully to reduce the emittance 

growth rate by a factor of two in each plane. This improvement was less than 



79 

expected from the common-mode noise level seen on the bus, indicating that 

other mechanisms of emittance growth are important. 

With the feed back circuit, the emittance growth rates at tunes near 19.06 

are expected to be similar to those seen during early days of Tevatron Collider 

operation with tunes 19.41. This is based on the improvement due to the rela- 

tivistic factor and on the character of SCR supplies, with operation at 900 GeV. 

The new working point near an integer value in tune space allows a tune 

shift four times greater than the one currently allowed with the normal Tevatron 

working point and could theoretically increase the maximum luminosity by a 

factor of sixteen. 
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